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AN ANALYSIS OF THE EFFECT OF PLATE THICKNESS
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INTERRUPTED-PLATE PASSAGES
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(Received 27 January 1981 and in revised form 8 May 1981)

Abstract—An analysis is presented for the flow and heat transfer in an interrupted-plate passage, which is an
idealization of the offset-fin heat exchanger. The plates are considered to be of finite thickness. The effect of
the plate thickness on the flow field and heat transfer is investigated through numerical solutions of the
governing equations. The flow field is found to be quite complex. It contains recirculation zones behind the
trailing edges of the plates, and there occurs significant deflection of the through flow. Whereas this greatly
increases the pressure drop required for a given flow rate, the heat transfer from the thick plates does not
improve sufficiently. Detailed results are presented for a number of thickness ratios and for a range of the
Reynolds number. The overall results are compared with available experimental data.
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NOMENCLATURE

total heat transfer area;

minimum flow area;

specific heat;

hydraulic diameter;

friction factor based on u,, and D,
equation (15);

friction factor based on d,, and 2H,
equation (7);

heat transfer coefficient, equation (26);
transverse spacing between the plates;
thermal conductivity;

plate length;

exchanger length;

log-mean temperature difference, equa-
tion (23});

total mass flow rate through the
module;

pressure ;

periodically varying part of pressure,
equation (1);

Prandtl number;

rate of total heat transfer from each
plate;

average heat flux on a plate, equation
(27);

Reynolds number, equation (6) and
(14);

Stanton number based on u,,, equation
(28);

nominal Stanton number based on i,
equation (29);

plate thickness;

temperature ;

buik temperature;

wall temperature of plate AB (Fig. 1);
periodically varying part of the tem-
perature, equation (16);

temperature difference between plates of

successive ranks;

1, velocity in the x direction;

t,, average velocity based on minimum
flow area A4.;

g, nominal average velocity based on

transverse spacing between plates H,
equation (5);

v, velocity in the y direction;

X, coordinate along the main flow
direction ;

¥, transverse coordinate;

z, coordinate perpendicular to the plane of
Fig. 1.

Greek symbols

B, overall pressure drop per unit length in
the main flow direction;
1, viscosity ;
X density.
INTRODUCTION

CompacT heat exchangers are increasingly used in a
wide variety of industrial applications. The offset-fin
geometry, which is described in [1] and [2], appears to
be most commonly employed. Figure 1 shows an array
of interrupted plates, which can be regarded as a 2-dim,
idealization of the offset-fin heat exchanger. It is well
known that the plate interruptions cause a continual
restarting of the thermal boundary layer, which results
in high heat transfer coefficients. This improved heat
transfer performance is, however, accompanied by
larger pressure drop due to the restartings of the
velocity boundary layer. Therefore, to optimize the
heat exchanger design, reliable information is needed
about both the heat transfer coefficient and the friction
factor.
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FiG. 1. An interrupted-plate passage.

Available experimental information on offset-fin
surfaces has been presented, reviewed, and correlated
in[1],[2], and [3]. Sparrow, Baliga, and Patankar [4]
assumed the plate thickness r in Fig. 1 to be negligible
and obtamed numerical solutions for laminar flow and
heat transfer for the resulting thin-plate passage.

The research described here focuses attention on the
effect of plate thickness. It is believed that the finite
thickness of the plates reduces the heat exchanger
performance. Yet, there is no way in practice to aveid
at least a certain minimum thickness of the plates,
which is needed for structural integrity. This thickness
may imply that the thickness ratio t/H is not negligible
if the dimension H, shown in Fig. 1, is itself chosen to
be small in the interest of compactness of the heat
exchanger.

The study of the thickness effect is of interest in a
number of other contexts. The plates used in practice
often have bent, burred, or scarfed edges. Moreover,
particle deposits and fouling can occur on the plates.
These influences increase the effective thickness of the
plates, and it is desirable to predict the corresponding
degradation of performance. In addition to the offset-
fin geometry, the flat-tube-and-plate-fin geometry {3}
lends itself to the 2-dim. idealization shown in Fig. 1,
where the thick plates can be imagined to be flattened
tubes. Thus, the results of the present study are also
relevant to the flat-tube heat exchangers.

The analysis of laminar flow in the thick-plate array
presents a more difficult computational problem than
the one solved in [4] for thin plates. When the plate
thickness is neglected, the impingement region on the
leading edge and the recirculating region behind the
trailing edge are absent. Therefore, the analysis in {4]
was performed by the use of a parabolic (i.e. boundary-
layer type} procedure, in which the solution could be
obtained by marching from the inlet plane to the
successive locations downstream. The thick-plate
analysis requires the solution of an elliptic problem, in
which the downstream locations have a significant
effect on the upstream happenings. Although
calculation methods are available for such problems
(for example, [5]), they require greater computer
storage and time than their parabolic counterpart. It
would, therefore. require excessive computing

resources if an interrupted-plate passage involving
many ranks of plates were to be analyzed. Fortunately,
in passages of this kind, the flow attains a periodic
fully-developed behaviour after a short entrance
region, which may extend to about 5 (at the most, 10}
ranks of plates [4]. In the periodic regime, the flow
repeats itsell in an identical manner for successive
geometrical modules. The existence of this fully-
developed periodic regime was first identified in [4].
Later, a calculation method was developed in [6],
which could directly obtain the solution for a typical
module, such as ABCDEFA in Fig. 1, without the need
for the entrance-region calculation. For design
purposes, it is sufficient to know the flow and heat
transfer characteristics for such a typical module in the
fully developed regime. For a heat exchanger
consisting of a large number of modules, the somewhat
different behaviour of the first few modules in the
entrance region should be unimportant.

The present paper describes the analysis and results
for the typical module shown in Fig. 1. The results are
presented for different values of t/H and for a range of
the Reynolds number. The plate spacing is kept
constant at L/H = 1. The heat transfer results pertain
to a Prandtl number of 0.7.

MATHEMATICAL FORMULATION

The velocity field

As mentioned earlier, the calculations for the
periodic {ully-developed flow will be confined to the
typical module ABCDEFA, shown in Fig. 1. Here AC
and FD are the lines of symmetry, while the flow across
line AF should be identical to the flow across CD. The
flow is assumed to be laminar and the fluid properties
to be constant.

As explained in [6], the pressure p in periodic fuily
developed flows can be expressed by

plx.y) = — Bx + Plx.y) (1

where f3 is a constant, and P(x,y) behaves in a periodic
fashion from module to module. The term fBx is
indicative of the general pressure drop that takes place
in the flow direction ; 2BL gives the pressure drop over
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the module shown in Fig. 1. The flow in the module is
governed by the continuity and momentum equations,
which can be written as

?ﬂ L 2)
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The boundary conditions are provzdcd by the no-
slip requirement on the plate surface, by v = 0 and
du/dy = 0 on the symmetry lines BC and FE, and by
the periodic behavior across AF and CD.

Since the boundary conditions do not involve the
specification of any inflow velocities, the mass flow rate
through the module cannot be directly prescribed. On
the other hand, the pressure gradient f must be known
so that equations (2)-{4) can be solved. In other words,
one specifies the pressure drop for the module, and the
resulting velocity field implies certain mass flow rate or
the corresponding Reynolds number. In a compu-
tation, however, it is possible to iteratively adjust
various quantities so that the converged solution is
obtained for a given mass flow rate or Reynolds
number.

With this understanding, the velocity field can be
seen to be completely governed by three parameters:
L/H, t/H and the Reynolds number.

When the plate thickness is significant, the
variations in the flow area lead to different definitions
of the Reynolds number and the friction factor. Some
are more conventional, while other definitions may
serve to display the effect of plate thickness more
directly. For this reason, two sets of definitions are
used here.

If sir denotes the mass flow rate through the module
per unit length in the z direction (normal to the plane
of Fig. 1), an average velocity i, can be based on the
nominal width (H/2) of the module. (The width H/2
corresponds to what is sometimes called the “frontal
area” of the heat exchanger.)

Thus,
iy = Wf{pH/2). (5)

Since the overall appearance of the interrupted-plate
passage is akin to a parallel-plate channel of a nominal
width H, the corresponding hydraulic diameter is 2H.
This leads to the definition of the Reynolds number as

Re = pti,(2H)/p = 4 /. (6)
The corresponding friction factor fis defined as
F= BRHY/(2p82). ]

Whereas for thin plates fis a measure of only the wall
friction, for thick plates f represents the total drag
which includes the form drag as well as the friction
drag.

The other set of definitions are constructed along the
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lines suggested by Kays and London [3]. The average
velocity u,, is based on the minimum flow area A,
anywhere in the channel. Thus

e = Mf(pA,), @)

where A, is taken for the module in Fig. 1 per unit
length in the z direction. The hydraulic diameter D, is
calculated from

Dy/L, =44./A, ®

where L, is the x-direction length of the heat
exchanger, and A is the heat transfer area in that
length.

Exactly whatexpression should be used for 4, and A
is somewhat arbitrary, and different practices seem to
be employed by different workers. The practice of Kays
and London, as inferred from the numerical values
given for Fig. 10-53 of [3], appears to be to take 4, as
0.5 (H —1) for the module chosen in Fig. 1. This is the
flow area over most of the passage, but not the
minimum area which occurs at line BE. In the
calculation of the heat transfer area A4, different
practices may or may not include the extira area
provided by the blunt edges of the plates. These
seemingly unimportant differences in definitions do,
however, have a significant impact on the correlation
of friction-factor and heat transfer results.

In the present work, different combinations of
practices were tried. The practices that are finally
adopted are those that give the best correlation of the
overall results for friction and heat transfer. No
fundamental significance is attached to these
particular practices.

Here the area A, is taken to be the minimum flow
area that occurs at line BE in Fig. 1. Thus,

A, =05H —t (10)

for a unit length in the z direction. In the calculation of
the heat transfer area A, the extra area of the blunt
edges of the plates is not included. For the module
chosen here,

A=2L (in
for a unit length in the z direction, and
L, =2L. (12
As a result,
Dy, =2H — 41 {13)

The Reynolds number Re can be obtained from
Re = p“aaDh/# =4m/u {14

which is the same as the Re given by equation {6). The
friction factor is defined as

f=BDy/2 puz,). (15)

It should be noted that, as the fin thickness ¢
approaches zero, D, becomes 2H, and fand 7 become
equal.

The temperature field
The heat transfer from the interrupted-plate array
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can be calculated for a variety of thermal boundary
conditions. The calculation method for two kinds of
boundary conditions was described in [6]. If all the
plates are maintained at the same temperature, the
bulk temperature of the fluid continuously gets closer
to the plate temperature, and the modules in the far
downstream region become virtually inactive. Thus,
this boundary condition is unlikely to be employed in
practice unless a significant temperature difference can
be maintained everywhere between the fluid and the
plates. Other common boundary conditions are those
in which a uniform heat flux occurs along the plate
surface or the plate temperature varies linearly in the
flow direction. For simple fully-developed duct flows,
these boundary conditions are easily attainable,
because the flow conditions at the duct wall do not
change in the streamwise direction. For the complex
flow considered here, the expected variation of the
local heat transfer coefficients precludes the possibility
of establishing these simple boundary conditions in
practice. A somewhat novel boundary condition is
employed here, which appears to be practically
relevant and attainable.

Itis quite plausible that each plate provides the same
rate of heat transfer Q {per unit length in the z
direction) to the fluid. The distribution of this heat
transfer in terms of the local heat flux and the local
temperature along the length of the plate will depend
on the flow conditions and the relative thermal
resistance of the plate material. If this resistance is
considered to be very small (implying a very high
thermal conductivity of the plate material), the plate
will attain a uniform temperature over its entire
surface. Since the fluid temperature will increase in the
flow direction, the successive plates must be
maintained at increasing temperatures so as to enable
each plate to transfer the same amount of heat to the
fluid.

In practice, the plate temperature in an offset-fin
heat exchanger is determined by the conditions at the
side walls to which the fins are attached. For the
purpose of analysis, it is convenient to imagine that an
electric heater of power output Q is embedded in each
plate of high thermal conductivity. Each plate will
then attain a different uniform temperature, with a
rising temperature pattern in the flow direc-
tion. Alternatively, the plates can be imagined to
be flattened tubes, which carry another fluid. The
temperature of this fluid in successive tubes is adjusted
such that each tube experiences the same heat loss ¢).

With this background, the thermal boundary
condition used in this study can be envisaged as
follows. All plates at a given streamwise location are at
a uniform temperature, which exceeds by AT the
temperature of the row of plates immediately
upstream. Thus, for the module shown in Fig. 1, the
plate ABis at a uniform temperature T, the next plate
ED s at T, + AT, the plate starting at point C is at
T, + 2AT, and so on. If each plate is to transfer the
same amount of heat Q to the fluid, and if a thermally
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periodic state is to prevail, the mean fluid temperature
would also rise by AT from station AF to station BE.
and again by AT from BE to CD, and so on.

Since the fluid temperature 7 would, in general. rise
in the flow direction, it does not behave in a periedic
fashion. It is, therefore, convenient to express 7 as

Tix. vy = (’LIAT + T{x, vi {161

where T(x, y) would vary periodically from module 1o
module. The similarity between equations (1) and (16}
is worth noting.
The energy equation can now be written as
T CAT

' oT /
[)Cp( u “(::; + v F;: ) = — ‘[)(,’pu( ‘!“" )

s AT\ oy oT . (AT \dk
J“z:?( k;T>+S;( "{{; J+{ L };’X (17

Although the fluid conductivity k will be regarded as
constant, the variable conductivity form of the energy
equation is written here for a special purpose, which
will be explained later.

The boundary conditions are given by 8T /¢y =0
across BC and FE, by the periodic behaviour across
AF and CD, and by the foliowing variations along the
plates AB and ED:

Plate AB: T =7, — (x\/L)AT. {18
Plate ED: T =7, + AT — (LAT.(U9

Here x is measured from point F. Equations (18) and
(19) specify that T varies from T, to T, — AT along
each plate, thus confirming the periodic character of T.

For a given T, (reference level) and a given AT
(scaling factor), equation (17) can be solved in con-
junction with the boundary conditions just stated. The
resulting solution will describe the corresponding
variation of the fluid temperature.

To exprcss the heat transfer results in convenient
dimensionless form, a number of related quantities will
now be defined. The bulk temperature of the fluid is
given by

T, = [Tlu|dy;{|u|dy. {20)

where the integrals are to be carried over the y
direction width of the module. The absolute valae of u
is taken so that the regions with reverse flow are also
properly represented. As already mentioned, the
values of T, for locations AF, BE and CD in Fig. L are
related by

(Tb)BF, - (Tb)AF + AT,

(Tylep = (Tplge + AT

To define the heat transfer coefficient for the plate
AB, the appropriate wall-to-bulk temperature dif-
ference is the log-mean temperature difference given

(70— (Tl = [Ty - (Tyed
ln{[Tw - ( Tb)AFJ//[Tw - (’Tb)BE] }

LMTD = {23}
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This expression can be simplified by the use of
equations (24) and (25) to read

LMTD = AT/In{1 + AT/[T,,— (Ty)gel}- (24)

It can be seen that the LMTD for plate ED can be
similarly defined in terms of (T',)cp at its downstream
end.

If Q denotes the heat lost by each plate (per unit
length in the z-direction), the total heat input to the
chosen module, which contains two half plates, is also
Q. This causes a bulk temperature rise of 2AT over the
module. Therefore.

Q =2ATnc, (25)
The heat transfer coefficient can be calculated from
h = (Q/A)/LMTD, (26)

The average heat flux over the entire surface of the
plate is, however, given not by Q/4 but by

4o = Q/Q2L + 2t). @n
Finally, the Stanton number follows from
St = hf(pe ) (28)

An alternative Stanton number St can be based on the
nominal average velocity 4, thus,

St = hi(pe,i,,). (29)

It should be noted that the heat transfer results
presented in this paper correspond to the particular
thermal boundary condition chosen here. Although
the influence of different boundary conditions was not
investigated, an estimate can be made from the well
known results for a parallel-plate channel. It is
expected that different thermal boundary conditions
may produce about 109 difference in the predicted St
values.

Computational details

The basic calculation method for periodic fully-
developed flow has been adequately described in [6].
The same general method was used in the present
investigation, although the solution of the velocity
field was accomplished by the “SIMPLER” procedure
{5]. This resulted in significantly faster convergence of
the iteration process. The convergence was further
speeded up by supplementing the line-by-line
solution of the discretization equations by the
additive—correction method of Settari and Aziz [7].

Rather than confine the computations to the rather
irregular flow domain shown in Fig. 1, it seemed
convenient to use the full rectangle ACDF as the
calculation domain, which includes the region
occupied by the solid plates as well as the region
through which the fluid flows. A suitable method for
incorporating such solid—fluid regions in one calcu-
lation domain has been developed in [8]. The solid
regions are effectively treated by setting the viscosity
there equal to a very large number.
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In the solution of the temperature field, the con-
ductivity for the solid regions should, in general, be set
equal to the true conductivity of the solid. However,
for the thermal boundary condition considered here,
the uniformity of the plate temperature could be
achieved by letting the solid region conductivity also
to be equal to a very large number. At this point, it may
be remembered that equation (17) was written for a
variable conductivity situation. Although & can be
taken to be constant within the solid and within the
fluid, the last term in equation {17) would be non-zero,
and must be correctly accounted for, at the solid-fluid
interfaces normal to the x direction.

All computations were performed on a 60 x 30 grid.
The x-direction grid spacing was varied so as to
provide a fine grid near the leading and trailing edges
of the plate. The y-direction grid was also made finer
near the plate surfaces. Exploratory solutions on
coarser grids and on grids with different grid-point
distributions indicated that the presented results are
accurate to at least 0.5%,. The flow-field results for the
case of zero plate thickness were found to agree
perfectly with those of [4].

Computations were carried out for the thickness
ratios t/H = 0, 0.1, 0.2, 0.3, and for the plate length
given by L/H = 1. The Prandtl number was set equal
to 0.7, while the Reynolds number Re was varied from
100 to 2000. In this range of Re, the real flow is
expected to be mostly laminar, although it is possible
that transition to turbulence may occur somewhat
before Re=2000 especially for the higher values of t/H.
Also, the real flow may display instabilities and vortex-
shedding from the trailing edges of the plates. These
phenomena are beyond the scope of the present
analysis.

The solution of equations (2)-(4) for a given value of
Re was obtained as follows. The pressure gradient 8
was set equal to a convenient constant value (for
example, B = 1). The first iteration for solving the flow
equations was performed with a tentative value of the
fluid viscosity p. The resulting velocity field was used
to calculate u,,. The viscosity 4 was then recalculated
such that the value of v,, would imply the given Re.
Such iterative updating of 4 finally led to the con-
verged solution for the required value of Re.

RESULTS AND DISCUSSION

Flow field

Considerable insight into the behaviour of friction
factor and heat transfer can be obtained from the
calculated flow field. The streamline plots in Fig. 2
show how the flow pattern changes with increasing
Reynolds number. The case of t/H = 0.3 is chosen so
that the plate-thickness effect is particularly magnified.
For the lower Reynolds numbers (Re = 100 and 500),
there is an impingement flow on the leading edge of the
plate and a small recirculation zone behind the trailing
edge. The main flow is deflected quite significantly and
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FiG. 2. Flow patterns for t/H = 0.3 at different Reynolds
numbers.

has a tendency to move away from the main surface of
the plate. For Re = 1000 and 2000, the recirculating
flow fills the space between the trailing edge of one
plate and the leading edge of the next plate, and the
impingement flow disappears. At Re = 2000, the
recirculation zone is seen to be shifted in the down-
stream direction. The through flow confines itself to
the unobstructed central core of minimum cross-
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FiG. 3. Flow patterns for Re = 2000 for different plate

thicknesses.
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section and more-or-less aligns with the x direction.

The effect of various plate thicknesses on the flow
pattern at a fixed Reynolds number (Re = 2000) is
shown in Fig, 3. Here, for t/H = 0.1 and 0.2, the flow
behavior is similar to the low Reynolds number cases
in Fig. 2. Only when the plate is sufficiently thick, the
recirculation zone extends to the next plate.

An interesting observation that can be made from
Figs 2and 3isthatthearea 4, given by eguation {10}y

indeed the minimum area experienced by the flow.

Friction factor

Here the friction factor is a measure of the pressure
drop required to sustain the flow through the
interrupted-plate array. The top diagram in Fig. 4
shows the variation of f with Re. The definition of £
employed here has the ability to correlate the results in
a somewhat narrow band. The / ~ Re curves for
different values of t/H in Fig. 4 can be seen to lie fairly
close to each other.

It is not useful to focus attention on whatever
dependence of t/H is noticeable in the top diagram of
Fig. 4. The displayed dependence is strongly controlled
by the definitions of A, and A. If the practices of Kays
and London [3] were used, then the f ~ Re curves in
Fig. 4 for different values of t/H would—it is possible
to show-—spread out quite significantly. Some de-
finitions can show that f increases with (/H, while
others show a decrease. It, therefore, appears that f'is
not a very useful quantity for the present problem since
it is so sensitive to how D, and u,, are defined.

By what factor does the pressure drop increase as a
result of replacing the zero-thickness plates by plates of
finite thickness? Such a question is not directly
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answered by the f ~ Re plot, because the plate
thickness enters the definition of fthrough D, and u,,.
For this reason, the bottom diagram in Fig. 4 is
provided. Here, at a given value of Re, fis a direct
measure of the pressure drop for a given mass flow rate
through a heat exchanger of fixed overall dimensions.
Over the Reynolds number range shown, ffor the thick
plate (t/H = 0.3) is 10-16 times the corresponding
values for the zero-thickness plate.

Overall heat transfer

The heat transfer results are presented in Fig. 5 in
terms of St Pr*® and §t Pr?. The Prandtl number
influence is included in the ordinate in an attempt to
generalize the results to other fluids, although the
present computations were performed only for Pr=0.7.
In the top plot of Fig. 5, St is seen to correlate very well
with Re, with no significant influence of t/H, It should
be remembered that the area of the blunt edges of the
plates was not included in the heat transfer area A.
What seems to happen is that the heat transfer from
the blunt edges is rather small; and this extra heat
transfer is just enough to compensate for the de-
terioration of the heat transfer from the main surface of
the plate. The trailing edge of the plate is always rather
inactive due to the separated flow there. As t/H or Re
increases, even the leading edge is washed by the slow
recirculating flow. The flow deflection away from the
main surface of the plate causes some decrease of heat
transfer there. Especially, the thin thermal boundary
layer near the leading edge is considerably disturbed
by the flow deflection in that region.

A direct comparison of the heat transfer from thick
and thin plates can be made from the bottom plot in
Fig. 5. Here, a given value of Re implies a fixed mass
flow rate in the same overall geometry. Further, if the
same temperature difference is allowed to exist between
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the fluid and the plates, §t serves as a measure of the
actual heat transfer from the plates. This heat transfer
is seen to increase with t/H, but not as much as one
would expect from the increased u,, and the increased
surface area for the thick plates. The St values for the
case of t/H = 0.3 are only about 24 times the
corresponding values for the zero-thickness plate. The
degradation is caused by the factors already discussed.
Further, these St ratios must viewed in conjunction with
the much higher ratios (10-16) for f.

Comparison with experiment

A convenient way of comparing the present resuits
with experimental data would have been to use the
empirical correlations of Wieting [2). However, these
correlations are based on 3-dim. offset-fin config-
urations, with a finite dimension in the z direction.
Further, the underlying data are all for rather smali
values of t/H with the result that Wieting does not
include t/H as a parameter in his correlations for
Reynolds numbers less than 1000. The data presented
by London and Shah [1] also could not be used, since
they do not include L/H values close to unity.

Comparisons are, therefore, made with the data
from Fig. 10-53 of Kays and London [3}. For this
case, the geometrical parameters are: L/H = 1.14,
t/H = 0.05, and the z direction width is about 5.9 H.
Thus the experimental situation corresponds only
approximately to the one computed here, Further, itis
stated in [3] that the offset-fin surfaces used in the
experiments had burred edges. Finally, the heat trans-
fer results may not be exactly comparable because of
the differences in thermal boundary conditions. Kays
and London [3] used condensing steam, leading to
nearly uniform plate temperatures.

The different definitions of A, 4, and D, present a
problem in this comparison. The difficulty can be
totally avoided by working with fand §t which are free
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Fic. 6. Comparison with experimental data.
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from the subtleties of definition. Figure 6 shows the
results for fand St Pr?3 plotted as a function of Re, The
numerical results are shown for t/H = Qand 0.1. The
Kays and London data, which correspond (o t/H =
0.05, have been appropriately converted to the coor-
dinates of Fig. 6.

The agreement of the computed f values with the
data can be judged to be quite satisfactory. The rather
high values of f'in the data for Re = 1000 may be due
to turbulence. Also, the burred edges may imply a
higher effective value of t/H.

There does not seem to be an obvious explanation
for the poor agreement of the Stanton number resuits.
Some departures between the experimental set-up and
the numerical model have already been mentioned;
but they alone may not be responsible for the large
discrepancy between the data and the computations.
The substantially different slopes of the data and the
computed curves may be particularly disturbing. In
this connection, one may wonder whether there is
something peculiar about this particular data set of
Kays and London. Many of their other data sets, albeit
for different geometries, show that the slopes of the f
and St curves are nearly equal. The equal slopes are
also in evidence in most of the data presented by
London and Shah [1], where they show the ratio of f
to St to be nearly independent of the Reynolds number.
Incidentally, the equal-slope behavior is indicated by
the Reynolds analogy. In Fig. 6, whereas the computed
curves for fand St do show nearly equal slopes, the
experimental data for St seem to follow a less steeper
line.

Local heat transfer

Further insight into the heat transfer behavior can be
obtained by examining the variation of the local heat
transfer along the surface of the plates. Figure 7 shows
the variation of the iocal heat flux g along the main
surface of the plates, such as the lower surface of plate
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F1G. & Heat flux variation on the leading edge.

ABin Fig. 1. Here g is normalized with reference to q,,,.
which stands for the average heat flux over the entire
surface of the plate. The variations in Fig. 7 show the
influence of t/H and Re. In all cases, there is a large
value of g/q,, near the leading edge of the plate (i.e. for
small x/L) associated with the thin thermal boundary
layer there. The rise in g/q,, near x/L = 1 is a result of
the flow acceleration caused by the blockage effect of
the next plate. The minimum value of ¢/q,, for each
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FiG. 7. Streamwise variation of the local heat flux.
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FiG. 9. Heat flux variation on the trailing edge.

Reynolds number appears to occur where, as seen from
Figs. 2 and 3, the largest flow area is available for the
through flow.

The variation of the local heat flux on the leading
edgeis shown in Fig. 8, while that on the trailing edge is
plotted in Fig. 9. In general, the values of g/q,, on the
leading edge are much greater than those on the
trailing edge. In both figures, high heat transfer rates
are found close to the sharp corner of the plate. Finally,
higher Reynolds numbers seem to make the heat flux
distribution more uniform.

1809

CONCLUDING REMARKS

An analysis has been presented for the flow and heat
transfer in an interrupted-plate passage, in which the
plate thickness is significant. The finite-thickness
plates are found to give rise to a complex flow pat-
tern involving impingement and recirculation zones
and flow deflection. Compared to the case of zero-
thickness plates, the thick-plate situation leads to

cdignificantly highar aracoura dran while the heat
signiicanuy nigncl Préssuic Grop, wilhe uie acdi

transfer does not sufficiently improve despite the
increased surface area and increased mean velocity.
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ANALYSE DE LEFFET DE L’EPAISSEUR DE LA PLAQUE SUR
L’ECOULEMENT LAMINAIRE ET LE TRANSFERT THERMIQUE
DANS DES PASSAGES DE PLAQUE INTERROMPUE

Ro’sumé—On présente une analyse de I'écoulement et du transfert thermique dans un passage de plaque
interrompue qui est I'idéalisation de I'échangeur 4 ailettes. Les plaques sont considérées 4 épaisseur finie.
Leffet d’épaisseur sur le champ d*écoulement et sur le transfert thermique est étudié a travers la solution
numeérique des équations de base. Le champ d’écoulement est trouvé trés compliqué. I comprend des zones
de recirculation derriére les bords de fuite des plaques et il y a aussi une déflexion marquée de I'écoulement.
Tan_dis que cela accroit fortement la perte de pression pour un débit donné, le transfert de chaleur des plaques
épaisses n’est pas suffisamment accru. Des résultats détaillés sont présentés pour un certain nombre de
rapports d’épaisseur et pour un domaine de nombre de Reynolds. Les résultats sont comparés aux données
expériementales disponibles.
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BERECHNUNG DES EINFLUSSES DER PLATTENDICKE AUF DIE LAMINARE
STROMUNG UND DEN WARMEUBERGANG IN KANALEN MIT UNTERBROCHENEN
PLATTEN

Zusammenfassung — Es wird eine Berechnungsmoglichkeit fiir die Stromung und den Wirmeibergang in
einem Kanal mit unterbrochenen Platten angegeben. Diese Anordnung stelit die Idealisierung eines
Wirmeiibertragers mit versetzten Rippen dar. Die Plattendicke wird als endlich betrachtet. Der Einflul3 der
Plattendicke auf das Stromungsfeld und auf den Wirmetibergang wird durch numerische Ldsung der
Bestimmungsgleichungen untersucht. Das Stromungsfeld stelit sich als sehr verwickelt dar. Es enthiilt
Riickstromzonen hinter den Abstromkanten der Platten, wo auch eine erhebliche Ablenkung der freien
Stromung auftritt. Wihrend hierdurch der Druckabfall fiir einen vorgegebenen Massenstrom bei dicken
Platten stark ansteigt, erhoht sich der Warmeiibergang dabei jedoch nur maBig. Detaillierte Ergebnisse
werden fiir eine Reihe von Dickenverhiltnissen und Reynolds-Zahlen angegeben und mit bekannten
experimentellen Daten verglichen.

AHAJIN3 BJIMAHUA TOJILMUHBI [TITACTUHBI HA JTAMUWHAPHOE TEYEHUE
W TEIUIOMNEPEHOC B 3A30PE MEX/1Y OTPE3KAMM IJIACTHH

Annotanns — [IpoBeeH aHAIM3 TEHYCHHSs M TEIUIONEPEHOCA B 3a30Pe MEXKAY OTPE3KaMM IUIACTHH.
PaccmaTtpuBaeMblii cryyadt fBISETCH HAEATH3ALMER TEMJIOOOMEHHHMKA CO CMELUIEHHBIMH pebpaMu.
[Mpeanonaraercs, 4TO IUTACTHHBI MMEIOT KOHE4HYIO TojiumHy. MccnenoBanue BAMAHHA TOILHHBI
IUIACTHHBI Ha NOJIe TEYCHHS M TEMUIONEPEHOC NPOBOAMTCS Ha OCHOBE YHMCJIEHHOTO PELICHHS YPaBHEHHH.
IToka3zaHo, YTO KAPTHHA TEYCHHS ABJIACTCH NOBOJILHO CNOXHOK. OHA COCTOMT M3 PELMPKYJISHHOHHBIX
30H 32 KPOMKO#H MIaCTHH, rae HabnroaaeTcs 3Ha4HTENbHOE OTKIOHEHHE OCHOBHOTO notoka. HeecmoTps
Ha TO, YTO TO NPHBOANT X BOSHHKHOBEHHIO OOJIBIIOrO nepenana NaBpNeHHs, ONpeLefeMOro BejTHYHHOMN
pPACX0Aa, KOJIMYECTBO TEIa, NEPEHOCHMOrO OT NJIACTHH OONBLIOH TOMUIMHBL, CYIIECTBEHHO HE YBEJIHUH-
Baetcs. IlpeactaBneHsl moapoOHbie pe3ynbTaThl IS Pa3AHYHBIX OTHOIUEHHH TOMHHMH M 3IHAYCHHHA
yucna Peitnonbaca. Pe3ynbTaThl pacueTa CPaBHHBAIOTCS C HMEIOIUMMHCS JKCTIEPHMEHTANbHBIMH
JAHHBIMH.



