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AN ANALYSIS OF THE EFFECT OF PLATE THICKNESS 
ON LAMINAR FLOW AND HEAT TRANSFER IN 

INTERRUPTED-PLATE PASSAGES 

S. V. PATANKAR and C. PRAKASH 

Department of Mechanics Engineering, University of Mi~esota, Minneapolis, MN 55455, U.S.A. 

Abstract-An analysis is presented for the flow and heat transfer in an interrupted-plate passage, which is an 
idealization of the offset-fin heat exchanger. The plates are considered to be of finite thickness. The effect of 
the plate thickness on the flow field and heat transfer is investigated through numerical solutions of the 
governing equations. The flow field is found to be quite complex. It contains recirculation zones behind the 
trailing edges of the plates, and there occurs significant deflection of the through flow. Whereas this greatly 
increases the pressure drop required for a given flow rate, the heat transfer from the thick plates does not 
improve sufficiently. Detailed results are presented for a number of thickness ratios and for a range of the 

Reynolds number. The overall results are compared with available experimental data. 
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total heat transfer area; 
minimum flow area ; 
specific heat ; 
hydraulic diameter ; 
friction factor based on uov and D,, 
equation (15); 
friction factor based on I&,” and 2H, 
equation (7); 
heat transfer coefficient, equation (26); 
transverse spacing between the plates ; 
thermal conductivity; 
plate length ; 
exchanger length ; 
log-mean temperature difference, equa- 
tion (23); 
total mass flow rate through the 
module ; 
pressure ; 
periodically varying part of pressure, 
equation (1); 
Prandtl number; 
rate of total heat transfer from each 
plate ; 
average heat flux on a plate, equation 

(27) ; 
Reynolds number, equation (6) and 

(14); 
Stanton number based on a,,, equation 

(28); 
nominal Stanton number based on I$,, 
equation (29); 
plate thickness; 
temperature ; 
bulk temperature ; 
wail temperature of plate AB (Fig. 1); 
periodically varying part of the tem- 
perature, equation (16) ; 
temperature difference between plates of 

successive ranks; 
velocity in the x direction; 
average velocity based on minimum 
flow area A, ; 
nominal average velocity based on 
transverse spacing between plates H, 
equation (5); 
velocity in the y direction ; 
coordinate along the main flow 
direction ; 
transverse coordinate; 
coordinate perpendicular to the plane of 
Fig. 1. 

Greek symbols 

overall pressure drop per unit length in 
the main flow direction; 
viscosity ; 
density. 

INTRODIXIION 

COMPACT heat exchangers are increasingly used in a 
wide variety of industrial applications. The offset-fin 
geometry, which is described in [l] and [2], appears to 
be most commonly employed. Figure 1 shows an array 
of interrupted plates, which can be regarded as a 2dim 
idealization of the offset-fin heat exchanger. It is well 
known that the plate interruptions cause a continual 
restarting of the thermal boundary layer, which results 
in high heat transfer coefficients. This improved heat 
transfer performance is, however, accompanied by 
larger pressure drop due to the restartings of the 
velocity boundary layer. Therefore, to optimize the 
heat exchanger design, reliable info~ation is needed 
about both the heat transfer coefficient and the friction 
factor. 
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Fro. 1. An interrupted-plate passage. 

Available experimental information on offset-fin 
surfaces has been presented, reviewed, and correlated 
in [I], [2], and [3]. Sparrow, Bahga, and Patankar [4] 
assumed the plate thickness r in Fig. 1 to be negligible 
and obtained numerical solutions for laminar flow and 
heat transfer for the resulting thin-plate passage. 

The research described here focuses attention on the 
effect of plate thickness. It is believed that the finite 
thickness of the plates reduces the heat exchanger 
performance Yet, there is no way in practice to avoid 
at least a certain minimum thickness of the plates, 
which is needed for structural integrity. This thickness 
may imply that the thickness ratio t/H is not negligible 
if the dimension H, shown in Fig. 1, is itself chosen to 
be small in the interest of compactness of the heat 
exchanger. 

The study of the thickness effect is of interest in a 
number of other contexts. The plates used in practice 
often have bent, burred, or scarfed edges. Moreover, 
particle deposits and fouling can occur on the plates. 
These influences increase the effective thickness of the 
plates, and it is desirable to predict the corresponding 
degradation of performance. In addition to the offset- 
fin geometry, the flat-tube-and-plate-fin geometry [3] 
lends itself to the 2-dim. idealization shown in Fig. 1, 
where the thick plates can be imagined to be flattened 
tubes. Thus, the results of the present study are also 
relevant to the flat-tube heat exchangers. 

The analysis of laminar flow in the thick-plate array 
presents a more difficult computational probIem than 
the one solved in [4] for thin plates. When the plate 
thickness is neglected, the impingement region on the 
leading edge and the recirculating region behind the 
trailing edge are absent. Therefore, the analysis in [4] 
was performed by the use of a parabolic (i.e. boundary- 
layer type) procedure, in which the solution could be 
obtained by marching from the inlet plane to the 
successive locations downstream, The thick-plate 
analysis requires the solution of an elliptic problem, in 
which the downstream locations have a significant 
effect on the upstream happenings. Although 
calculation methods are available for such problems 
(for example, [S]), they require greater computer 
storage and time than their parabolic counterpart. It 
would, therefore. require excessive computing 

resources if an interrupted-plate passage involvmg 
many ranks of plates were to be analyzed. Fortunately, 
in passages of this kind, the flow attains a periodic 
fully-developed behaviour after a short entrance 
region, which may extend to about 5 (at the most, 10) 
ranks of plates 14). In the periodic regime, the flow 
repeats itself in an identical manner for successive 
geometrical modules. The existence of this fully,- 
developed periodic regime was first identified in [4]. 
Later. a calculation method was developed in [6], 
which could directly obtain the solution for a typical 
module, such as ABCDEFA in Fig. 1, without the need 
for the entrance-region calculation. For design 
purposes, it is sufficient to know the flow and heat 
transfer characteristics for such a typical module in the 
fully developed regime. For a heat exchanger 
consisting ofa large number of modules, the somewhat 
different behaviour of the first few modules in the 
entrance region should be unimportant. 

The present paper describes the analysis and results 
for the typical module shown in Fig. 1. The results are 
presented for different values of t/H and for a range of 
the Reynolds number. The plate spacing is kept 
constant at L/H = 1. The heat transfer results pertain 
to a Prandtl number of 0.7. 

MATHEMATICAL FORMULATlOh 

As mentioned earlier, the calculations for the 
periodic fully-developed Row will be confined to the 
typical module ABCDEFA. shown in Fig. 1. Here AC 
and FD are the lines of symme&ry, white the flow across 
line AF should be identical to the flow across CD. The 
flow is assumed to be iaminar and the fluid properties 
to be constant. 

As explained in [6], the pressure p in periodic fully 
developed Bows can be expressed by 

p(?c,y) = - j?X + P(x.y), (1) 

where /j’ is a constant, and P(x,y) behaves in a periodic 
fashion from module to module. The term /?x is 
indicative of the general pressure drop that takes place 
in the flow direction; 2fiL gives the pressure drop over 
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the module shown in Fig. 1. The flow in the module is 
governed by the continuity and momentum equations, 
which can be written as 

au au 
z+-=Q 

x ay 
(2) 

The boundary conditions are provided by the RO- 
slip requirement on the plate surface, by Y = 0 and 
au/+ = 0 on the symmetry lines BC and FE, and by 
the periodic behavior across AF and CD. 

u a” = ~~(~~=), (8) 

where A, is taken for the module in Fig. 1 per unit 
length in the z direction. The hydraulic diameter D, is 
calculated from 

l&,/L, = 4 AJA, PI 

where LX is the x-direction length of the heat 
exchanger, and A is the heat transfer area in that 
length. 

Since the boundary conditions do not involve the 
specification of any inflow veiocities, the mass flow rate 
through the module cannot be directly prescribed. On 
the other hand, the pressure gradient fl must be known 
so that equations (2)-(4)can be solved. In other words, 
one specifies the pressure drop for the module, and the 
resulting velocity fidd implies certain mass fiow rate or 
the corresponding Reynolds number. In a compu- 
tation, however, it is possible to iteratively adjust 
various quantities so that the converged solution is 
obtained for a given mass Bow rate or Reynolds 
number. 

With this understanding, the velocity field can be 
seen to be completely governed by three parameters: 
L/H, t/W and the Reynolds number. 

When the plate thickness is significant, the 
variations in the flow area lead to different definitions 
of the Reynolds number and the friction factor. Some 
are more conventionat, while other definitions may 
serve to display the effect of plate thickness more 
directly. For this reason, two sets of definitions are 
used here. 

Exactly what expression should be used for A, and A 
is somewhat arbitrary, and different practices seem to 
be employed by different workers. The practice of Kays 
and London, as inferred from the numerical values 
given for Fig. lo-53 of [3], appears to be to take A, as 
0.5 (H-t) For the module chosen in Fig. I. This is the 
flow area over most of the passage, but not the 
~~~~~~ area which occurs at line BE. In the 
calculation of the heat transfer area A, difierent 
practices may or may not include the extra area 
provided by the blunt edges of the plates. These 
seemingly unimportant differences in definitions do, 
however, have a significant impact on the correlation 
of friction-factor and heat transfer results. 

In the present work, different combinations of 
practices were tried. The practices that are finally 
adopted are those that give the best correlation of the 
overall results for friction and heat transfer. No 
fundamental significance is attached to these 
particular practices. 

If $2 denotes the mass flow rate through the module 
per unit length in the z direction (normal to the plane 
of Fig. I), an average velocity ir,, can be based on the 
nominal width (H/2) of the module. (The width H/2 
corresponds to what is sometime called the “frontal 
area” of the heat exchanger.) 

Thus, 

ii,, = ~~~~~2). (5) 

Since the overall appearance of the inte~pted-plate 
passage is akin to a parallel-plate channel of a nominal 
width H, the corresponding hydraulic diameter is 2B. 
This leads to the de~nition of the Reynolds number as 

IIere the area A, is taken to be the minimum flow 
area that occurs at Iine BE in Fig. 1, Thus, 

A, = OSH - t 001 

for a unit length in the z direction. In the calculation of 
the heat transfer area A, the extra area of the blunt 
edges of the plates is not included. For the module 
chosen here, 

A = 2L (II) 

for a unit length in the z direction, and 

Lx = 2L. (12) 
As a result, 

Re = pli,,(2H)/p = 4 tijp. (6) 

The corresponding friction factor f is defined as 

J = ~(2~)/t2~~~). (7) 
Whereas for thin ptatesfis a measure of only the wall 
friction, for thick plates f represents the total drag 
which inchrdes the form drag as we1.f as the friction 
drag. 

I& = 2H - 4t. (13) 

The Reynolds number Re can be obtained from 

Re = Q~~~~~~ =4i?i/p (14) 

which is the same as the Regiven by equation (6). The 
friction factor is defined as 

s = ~~~(2 Pu:“). (1% 

It should be noted that, as the fin thickness t 
approaches zero, D,, becomes 2H, andfand.fbecome 
equal 

The other set ofde~itions are constructed along the The heat transfer from the inter~pt~-plate array 

lines suggested by Kays and London [3]. The average 
velocity u,, is based on the minimum flow area A, 
anywhere in the channel. Thus 
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can be calculated for a variety of thermal boundary 
conditions. The calculation method for two kinds of 
boundary conditions was described in [6]. If all the 
plates are maintained at the same temperature, the 
bulk temperature of the fluid continuously gets closer 
to the plate temperature, and the modules in the far 
downstream region become virtually inactive. Thus, 
this boundary condition is unlikely to be employed in 
practice unless a significant temperature difference can 
be maintained everywhere between the fluid and the 
plates. Other common boundary conditions are those 
in which a uniform heat flux occurs along the plate 
surface or the plate temperature varies linearly in the 
flow direction. For simple fully-developed duct flows, 
these boundary conditions are easily attainable, 
because the ffow conditions at the duct wall do not 
change in the streamwise direction. For the complex 
flow considered here, the expected variation of the 
local heat transfer coefficients precludes the possibility 
of establishing these simple boundary conditions in 
practice. A somewhat novel boundary condition is 
employed here, which appears to be practically 
relevant and attainable. 

It is quite plausible that each plate provides the same 
rate of heat transfer Q (per unit length in the z 
direction) to the fluid. The distribution of this heat 
transfer in terms of the local heat flux and the local 
tem~rature along the length of the plate will depend 
on the flow conditions and the relative thermal 
resistance of the plate material. If this resistance is 
considered to be very small (implying a very high 
thermal conductivity of the plate material), the plate 
will attain a uniform temperature over its entire 
surface. Since the fluid temperature will increase in the 
flow direction, the successive plates must be 
maintained at increasing temperatures so as to enable 
each plate to transfer the same amount of heat to the 
fluid. 

In practice, the plate temperature in an offset-fin 
heat exchanger is determined by the conditions at the 
side walls to which the fins are attached. For the 
purpose of analysis, it is convenient to imagine that an 
electric heater of power output Q is embedded in each 
plate of high thermal conductivity. Each plate will 
then attain a different uniform temperature, with a 
rising temperature pattern in the flow direc- 
tion. Alternatively, the plates can be imagined to 
be flattened tubes, which carry another fluid. The 
temperature of this fluid in successive tubes is adjusted 
such that each tube experiences the same heat loss Q. 

With this background, the thermal boundary 
condition used in this study can be envisaged as 
follows. All plates at a given streamwise location are at 
a uniform temperature, which exceeds by AT the 
temperature of the row of plates immediately 
upstream. Thus, for the module shown in Fig. I, the 
plate AB is at a uniform tem~rature T,, the next plate 
ED is at T, + AT, the plate starting at point C is at 
7, -+- 2AT, and so on. If each plate is to transfer the 
same amount of heat Q to the fluid, and if a thermally 

periodic state is to prevail, the mean fuid temperature 
would also rise by AT from station AF to station BE. 
and again by AT from BE to CD. and so on 

Since the fluid temperature 7‘ would, in general. r~sc 
in the flow direction, it does not behave in a perrodifc 
fashion. It is. therefore, convenient lo cxpresl; r :\s 

7-(.X, y) = (.YiL)AT + ?‘(\. i‘9, f 16% 

where ?‘(.v, y9 would vary periodically from module LU 
module. The similarity between equations (1) and i 1 hi 
is worth noting. 

The energy equation can now be written as 

Although the fluid conductivity k will be regarded as 
constant, the variable conductivity form of the energy 
equation is written here for a special purpose, which 
will be explained later. 

The boundary conditions are given by ??;?J = 0 
across BC and FE, by the periodic behaviour across 
AF and CD, and by the following variations along the 
plates AB and ED: 

Plate AB: 7 = ?, -. (.\tL)AI. (IX9 

Plate ED: 7 = 7* + ,27‘ - {.Y.~L9AT.( 199 

Were .Y is measured from point F. Equations (18) and 
(19) specify that F varies from T,, to T, - AT along 
each plate, thus confirming the periodic character of 1. 

For a given T, (reference level) and a given AT 
(scaling factor), equation (17) can be solved in con- 
junction with the boundary conditionsjust stated. The 
resulting solution will describe the corresponding 
variation of the fluid temperature. 

To express the heat transfer results in convenient 
dimensionless form, a number of related quantities will 
now be defined. The bulk temperature of the Auid is 
given by 

7, = J2$4(dl’.‘!‘lu/til.. r209 

where the integrals are to be carried over the J 
direction width of the module. The absolute value of u 
is taken so that the regions with reverse flow are also 
properly represented. As already mentioned, the 
values of 7, for locations AF, BE and CD in Fig. 1 are 
related by 

(7/J”, = (7,9,4F + A’7 1211 

(T&, = (Th)BE i- AT. i22) 

To define the heat transfer coefficient for the plate 
AB, the appropriate wall-to-bulk temperature dif- 
ference is the log-mean temperature difference given 
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This expression can be simplified by the use of 
equations (24) and (25) to read 

LMTD = AT/ln(l + AT/[T,-U’,),J}. (24) 

It can be seen that the LMTD for plate ED can be 
similarly defined in terms of (T&o at its downstream 
end. 

If Q denotes the heat lost by each plate (per unit 
length in the z-direction), the total heat input to the 
chosen module, which contains two half plates, is also 
Q. This causes a bulk temperature rise of 2AT over the 
module. Therefore. 

Q = 2ATnic,. (25) 

The heat transfer coefficient can be calculated from 

h = (Q,‘A)/LMTD. (26) 

The average heat flux over the entire surface of the 
plate is, however, given not by Q/A but by 

q,, = Q/W + 20 

Finally, the Stanton number follows from 

(271 

St = VPcp%J. (28) 

An alternative Stanton number St can be based on the 
nominal average velocity li,, thus, 

St = h/(pc,u^,,). (29) 

It should be noted that the heat transfer results 
presented in this paper correspond to the particular 
thermal boundary condition chosen here. Although 
the influence of different boundary conditions was not 
investigated, an estimate can be made from the well 
known results for a parallel-plate channel. It is 
expected that different thermal boundary conditions 
may produce about 10% difference in the predicted St 
values. 

Computational details 
The basic calculation method for periodic fully- 

developed flow has been adequately described in [6]. 
The same general method was used in the present 
investigation, although the solution of the velocity 
field was accomplished by the “SIMPLER” procedure 
[S]. This resulted in si~ifi~tly faster convergence of 
the iteration process. The convergence was further 
speeded up by supplementing the line-by-line 
solution of the discretization equations by the 
additive-correction method of Settari and Aziz [7]. 

Rather than confine the computations to the rather 
irregular flow domain shown in Fig, 1, it seemed 
convenient to use the full rectangle ACDF as the 
calculation domain, which includes the region 
occupied by the solid plates as well as the region 
through which the fluid flows. A suitable method for 
incorporating such solid-fluid regions in one calcu- 
lation domain has been deveioped in [g]. The solid 
regions are effectively treated by setting the viscosity 
there equal to a very large number. 

In the solution of the temperature field, the con- 
ductivity for the solid regions should, in general, be set 
equal to the true conductivity of the solid. However, 
for the thermal boundary condition considered here, 
the uniformity of the plate temperature could be 
achieved by letting the solid region conductivity also 
to be equal to a very large number. At this point, it may 
be remembered that equation (17) was written for a 
variable conductivity situation. Although k can be 
taken to be constant within the solid and within the 
fluid, the last term in equation (17) would be non-zero, 
and must be correctly accounted for, at the solid-fluid 
interfaces normal to the x direction. 

All computations were performed on a 60 x 30 grid. 
The x-direction grid spacing was varied so as to 
provide a fine grid near the leading and trailing edges 
of the plate. The y-direction grid was also made finer 
near the plate surfaces. Exploratory solutions on 
coarser grids and on grids with different grid-point 
distributions indicated that the presented results are 
accurate to at least 0.5%. The flow-field results for the 
case of zero plate thickness were found to agree 
perfectly with those of [4-J. 

Computations were carried out for the thickness 
ratios t/H = 0, 0.1, 0.2, 0.3, and for the plate length 
given by L/H = 1. The Prandtl number was set equal 
to 0.7, while the Reynolds number Re was varied from 
100 to 2000. In this range of Re, the real flow is 
expected to be mostly laminar, although it is possible 
that transition to turbulence may occur somewhat 
before Re = 2ooO especially for the higher values of t/H. 
Also, the real flow may display instabilities and vortex- 
shedding from the trailing edges of the plates. These 
phenomena are beyond the scope of the present 
analysis. 

The solution of equations (2)-(4) for a given value of 
Re was obtained as follows. The pressure gradient /I 
was set equal to a convenient constant value (for 
example, B = 1). The first iteration for solving the flow 
equations was performed with a tentative value of the 
fluid viscosity p. The resulting velocity field was used 
to calculate u,,. The viscosity p was then recalculated 
such that the value of u,,, would imply the given Re. 
Such iterative updating of ~1 finally led to the con- 
verged solution for the required value of Re. 

RESULI3 AND DISCUSSION 

Flow field 
Considerable insight into the behaviour of friction 

factor and heat transfer can be obtained from the 
calculated flow field. The streamline plots in Fig. 2 
show how the flow pattern changes with increasing 
Reynolds number. The case of t/H = 0.3 is chosen so 
that the plate-thickness effect is particularly magnified. 
For the lower Reynolds numbers (Re = 100 and 500), 
there iS an im~g~t flow on the leading edge of the 
plate and a small r~rculation zone behind the trailing 
edge. The main flow is deflected quite significantly and 
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Re = 100 

Re = 500 

Re =I000 

Re = 2000 

FIG. 2. Flow patterns for t/H = 0.3at different Reynolds 
numbers. 

has a tendency to move away from the main surface of 

the plate. For Re = 1000 and 2000, the recirculating 
flow fills the space between the trailing edge of one 
plate and the leading edge of the next plate, and the 

impingement flow disappears. At Re = 2000, the 
recirculation zone is seen to be shifted in the down- 

stream direction. The through flow confines itself to 

the unobstructed central core of minimum cross- 

t/H = 0.1 

t/H = 0.2 

FIG. 3. Flow patterns for Re = 2000 for different plate 
thicknesses. 

section and more-or-less aligns with the .x direction 

The effect of various plate thicknesses on the tlou 
pattern at a fixed Reynolds number (Re = 2000) is 

shown in Fig. 3. Here, for t,;H == 0.1 and 0.2. the tlov 

behavior is similar to the low Reynolds number cases 

in Fig. 2. Only when the plate is sufficiently thick, the 
recirculation zone extends to the next plate. 

An interesting observation that can be made from 

Figs. 2 and 3 is that the area A, given by equation (1 I)) IS 
indeed the minimum area experienced by the flow. 

Here the friction factor is a measure of the prcssurc 

drop required to sustain the tlow through the 
interrupted-plate array. The top diagram in FIN. 4 
shows the variation off with Rc. The definition of Mf 

employed here has the ability to correlate the results :n 
a somewhat narrow band. The / _ RCJ c‘urves for 

different values of t/H in Fig. 4 can be seen to lie fairly 
close to each other. 

It is not useful to focus attention on whatec0 

dependence of t/H is noticeable in the top diagram o! 

Fig. 4. The displayed dependence is strongly controlled 

by the definitions of A, and A. If the practices of Rays 
and London [3] were used, then thej‘ _ Re curves in 
Fig. 4 for different values of t/H would--it is possible 
to show~~~~-spread out quite significantly. Some de- 
finitions can show that .f increases with i.:II, while 

others show a decrease. It, therefore, appears that f‘is 
not a very useful quantity for the present problem since 

it is so sensitive to how D, and u,, are defined. 

By what factor does the pressure drop increase as a 

result of replacing the zero-thickness plates by plates of 
finite thickness? Such a question is not directly 
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the lbtid and the plates, fi serves as a measure of the 
actual heat transfer from the plates. This heat transfer 
is seen to increase with t/H, but not as much as one 
would expect from the increased u,, and the increased 
surface area for the thick plates. The Z& values for the 
case of t/H = 0.3 are only about 2.4 times the 
corresponding values for the zero-thickness plate. The 
degradation is caused by the factors already discussed. 
Further, these 5% ratios must viewed in injection with 
the much higher ratios (10-16) for j: 

I I 
o~“‘o.l 0.2 

I I I I 
1.0 2*0 

g&J-3 

answered by the f - Re plot, because the plate 
thickness enters the definition off through D,, and u,,. 
For this reason, the bottom diagram in Fig. 4 is 
provided. Here, at a given value of Re,? is a direct 
measure of the pressure drop for a given mass flow rate 
through a heat exchanger of fixed overall dimensions. 
Over the Reynolds number range shown,j”for the thick 
plate (r/H = 0.3) is lo-16 times the corresponding 
values for the pro-sickness plate. 

The heat transfer results are presented in Fig. 5 in 
terms of St Pr213 and St P&s. The Prandtl number 
influence is included in the ordinate in an attempt to 
generalize the results to other fluids, although the 
present computations were performed only for Pr = 0.7. 
In the tap plot of Fig. 5, St is seen to correlate very well 
with Re, with no significant influence of t/H. It should 
be remembered that the area of the blunt edges of the 
plates was not included in the heat transfer area A. 
What seems to happen is that the heat transfer from 
the blunt edges is rather small; and this extra heat 
transfer is just enough to compensate for the de- 
terioration of the heat transfer from the main surface of 
the plate. The trailing edge of the plate is always rather 
inactive due to the separated flow there. As t/H or Re 
increases, even the leading edge is washed by the slow 
recirculating flow. The flow deflection away from the 
main surface of the plate causes some decrease of heat 
transfer there. Especially, the thin thermal boundary 
layer near the leading edge is considerably disturbed 
by the flow deflection in that region. 

A direct comparison of the heat transfer from thick 
and thin plates can be made from the bottom plot in 
Fig. 5. Here, a given value of Rc? implies a fixed mass 
flow rate in the same overall geometry. Further, if the 
same temperature difference is allowed to exist between 

Comparison with experiment 
A convenient way of comparing the present results 

with experimental data would have been to use the 
empirical correlations of Wieting (21. However, these 
correlations are based on 3-dim. offset-fin config- 
urations, with a finite dimension in the z direction. 
Further, the underlying data are all for rather small 
values of t/H with the result that Wieting does not 
include t/H as a parameter in his correlations for 
Reynolds numbers less than IO@@. The data presented 
by London and Shah [i] also could not be used, since 
they do not include L/H values close to unity. 

Comparisons are, therefore, made with the data 
from Fig. 10-53 of Kays and London [3]. For this 
case, the geometrical parameters are: L/H = 1.14, 
t/If = 0.05, and the z direction width is about 5.9 H. 
Thus the experimental situation corresponds only 
approximately to the one computed here. Further, it is 
stated in [3] that the offset-fin surfaces used in the 
experiments had burred edges. Finally, the heat trans- 
fer results may not be exactly comparable because of 
the differences in thermal boundary conditions. Kays 
and London f3] used condensing steam. leading to 
nearly uniform plate tem~ratures. 

The different definitions of A,, A, and D, present a 
problem in this comparison. The difficulty can be 
totally avoided by working withfand St which are free 

0‘2 

s^t pr2/Y 

0.05 - 

0.02 - 

O‘O11- 2.0 3.0 

Re x Kr3 
FIG. 6. Comparison with experimental data. 
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from the subtleties of definition. Figure 6 shows (he 
results forTand s^t pr2s3 plotted as a function of&. The 
numerical results are shown for i/H = 0 and 0.1. The 
Kays and London data, which correspond to t:W -5 
0.05, have been appropriately converted to the coor- 
dinates of Fig. 6. 

The agreement of the computed f values with the 
data can be judged to be quite satisfactory. The rather 
high values offin the data for Re = loo0 may be due 
to turbulence. Also, the burred edges may imply a 
higher effective value of t/H. 

There does not seem to be an obvious expIanation 
for the poor agreement of the Stanton number results. 
Some departures between the experimental set-up and 
the numerical model have already been mentioned; 
but they alone may not be responsible for the large 
discrepancy between the data and the computations. 
The substantially different slopes of the data and the 
computed curves may be particularly disturbing. In 
this connection, one may wonder whether there is 
something peculiar about this particular data set of 
Kays and London. Many of their other data sets, albeit 
for different geometries, show that the slopes of thef 
and St curves are nearly equal The equal slopes are 
also in evidence in most of the data presented by 
London and Shah Cl], where they show the ratio of,f 
to St to be nearly independent of the Reynolds number. 
Incidentally, the equal-slope behavior is indicated by 
the Reynolds analogy. In Fig. 6, whereas the computed 
curves for 7 and s^t do show nearly equal slopes, the 
experimental data for S? seem to follow a less steeper 
line. 

Local heat transfer 

Further insight into the heat transfer behavior can be 
obtained by examining the variation of the local heat 
transfer along the surface of the plares. Figure 7 shows 
the variation of the local heat flux 4 along the main 
surface of the plates, such as the lower surface of plate 

7 llHr0.3 

0 0.1 0.2 0.3 Y/t 
0.4 0.5 

6r 4 t/H=&? , 
i 

FIG. 8. Heat flux variation on the leading edge 

AB in Fig. 1. Here q is normalized with reference to q,, 
which stands for the average heat flux over the entire 
surface of the plate. The variations in Fig. 7 show the 
influence of t/H and Re. In all cases, there is a large 
value of q/q,,, near the leading edge of the plate (i.e. for 
small .x/L) associated with the thin thermal boundary 
layer there. The rise in q/qaO near .urL = 1 is a result of 
the flow acceleration caused by the blockage effect of 
the next plate. The minimum value of q/q,, for each 

2.0 
4 

G 1.0 

a7 

?O 0.2 0.4 0.6 0.8 1.0 

2.0 
9 

G 
1.0 

0.7 
0.5 
0 0.2 0.4 0.6 Q8 1.C 

FIG. 7. Streamwise variation of the local heat flux. 
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tied5 
0 0.1 0.2 

0.21 I 
0 0.1 62 y/t d.3 014 d.5 

FIG. 9. Heat flux variation on the trailing edge. 

Reynolds number appears to occur where, as seen from 
Figs. 2 and 3, the largest flow area is available for the 
through flow. 

The variation of the local heat flux on the leading 
edge is shown in Fig. 8, while that on the trailing edge is 
plotted in Fig. 9. In general, the values of q/q,,, on the 
leading edge are much greater than those on the 
trailing edge. In both figures, high heat transfer rates 
are found close to the sharp corner of the plate. Finally, 
higher Reynolds numbers seem to make the heat flux 
distribution more uniform. 

CONCLUDING REMARKS 

An analysis has been presented for the flow and heat 
transfer in an interrupted-plate passage, in which the 
plate thickness is significant. The finite-thickness 
plates are found to give rise to a complex flow pat- 
tern involving impingement and recirculation zones 
and flow deflection. Compared to the case of zero- 
thickness plates, the thick-plate situation leads to 
significantly higher pressure drop, while the heat 
transfer does not sufficiently improve despite the 
increased surface area and increased mean velocity. 
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ANALYSE DE L’EFFET DE L’EPAISSEUR DE LA PLAQUE SUR 
L’ECOULEMENT LAMINAIRE ET LE TRANSFERT THERMIQUE 

DANS DES PASSAGES DE PLAQUE INTERROMPUE 

R&sum&-On pr&ente une analyse de l%coulement et du transfert thermique dans un passage de plaque 
interrompue qui est l’idealisation de l’changeur B ailettes. Les plaques sont consid&& B kpaisseur finie. 
L’effet d’kpaisseur sur le champ d%coulement et sur le transfert thermique est dtudiC a travers la solution 
num&ique des Cquations de base. L.e champ d%coulement est trouvb t&s compliqu& II comprend des zones 
de recirculation derri&e les bords de fuite des plaques et il y a aussi une dkflexion marquke de lkoulement. 
Tandis que cela accroit fortement la perte de pression pour un debit donnt, le transfert de chaleur des plaques 
6paisses n’est pas suffisamment accru. Des r6sultats d&aillts sont prtsentts pour un certain nombre de 
rapports d’ipaisseur et pour un domaine de nombre de Reynolds. Les rtsultats sont cornparks aux donnkes 

expkriementaies disponibles. 
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BERECHNUNG DES EINFLUSSES DER PLATTENDICKE AUF DIE LAMlNARE 
STRC)MUNG UND DEN WARMEUBERGANG IN KANALEN MIT UNTERBROCHENEN 

PLATTEN 

Zusammenfasung -- Es wird eine Berechnungsmoglichkeit fur die Stromung und den WIrmeubergang m 
einem Kanal mit unterbrochenen Platten angegeben. Diese Anordnung stellt die Idealisierung eines 
Warmeubertragers mit versetzten Rippen dar. Die Plattendicke wird als endlich betrachtet. Der Einflull der 
Plattendicke auf das Stromungsfeld und auf den Wlrmeiibergang wird durch numerische LBsung der 
Bestimmungsgleichungen untersucht. Das Stromungsfeld stellt sich als sehr verwickelt dar. Es enthalt 
Ruckstromzonen hinter den Abstromkanten der Platten, wo such eine erhebliche Ablenkung der freien 
Stromung auftritt. Wahrend hierdurch der Druckabfall fur einen vorgegebenen Massenstrom bei dicken 
Platten stark ansteigt, erhoht sich der Warmeubergang dabei jedoch nur magig. Detaillierte Ergebnisse 
werden fur eine Reihe von Dickenverhaltnissen und Reynolds-Zahlen angegeben und mit bekannten 

experimentellen Daten verglichen. 

AHAJIM3 BJIMXHMII TOJIIIIMHbI HJIACTMHbl HA JIAMMHAPHOE TEYEHME 
M TEIIJIOIIEPEHOC B 3A30PE MEXAY OTPE3KAMM IIJIACTMH 

AHHoraqnn - nposeneH anann reqenna A rennonepenoca a ‘sasope Megny orpe%aMn imacruH. 
PaCCMaTpHBaeMbIfi CJly’iaa IlElJIleTCR WAeaJlH3aLtReii TeFlnOO6MeHHHKa CO CMcIl,eHHblMR pe6paMH. 

npWIOZWXTCS4. qT0 nnaCTWHb1 HMemT KOHevHym TOnuWHy. MCCneAOBaHHe BnWRHHR TOnUIAHbI 

“AaCTHHbl Ha “One Te’feHHIl II TeuJIOnepeHOC npOBOAHTCSI Ha OCHOBC ‘,AC.“eHHO~O pe,“cHRR ypaBHeHH% 

nOKa3aH0, VT0 KapTHHa TCYeHHII IlBxReTCR AOBOnbHO CnOxHOi?. OHa COCTOHT H3 peUHpKynxUHOHHbIX 

30H 3a KpOMKOfi “,IaCTAH. me Ha6JIWAaeTC5, 3Ha’lHTenbHOe OTK.“OHeHBe OCHOBHOrO IIOTOKa. HeCMOTps 

Ha TO, qT0 3TO IIpSiBOAHT K B03HWKHOBeHHK) 6onbmoro IlepeIIaAa IlaBJIeHWR. OlljXAeJI~eMOrO BWWikiHOii 

pacxona, KOJIA’IeCTBO renna, nepettocnMor0 OT nnacTHH 6onbmoii TOJIllJWHbI, CylIleCTBeHHO He ysenme- 

BaeTCB. npeACTaBneHb1 nOApO6HbIe pe3yJIbTaTbI AJIR pa3JWlHbIX OTHOtlIeHHii TOJWUH H ?HaqeHHti 

‘,ACIIa P‘$HO,IbnCa. Pe3y,,bTaTbl pX%Ta CpaBHHBaWTCn C HM’SO~HMHC~ ?KCnepHMeHTanbHbIMH 

,WHHbIMH. 


